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Abstract
The electronic energy band structure, density of states (DOS) and charge
density contour of KNbO3 in the paraelectric cubic phase have been studied
using the full-potential linearized augmented plane wave method within the
generalized gradient approximation for exchange and correlation. The band
structure shows an indirect (R–�) band gap. From the DOS analysis as well
as charge density studies, we find that the bonding between K and NbO3 is
mainly ionic while that between Nb and O is covalent. We have also reported
results on the pressure variation of the energy gap of this compound and found
that the band gap increases with increasing pressure. In order to understand
the optical properties of the perovskite, the real and imaginary parts of the
dielectric function, reflectivity, absorption coefficient, optical conductivity,
electron energy-loss function, refractive index and extinction coefficient were
calculated. The general profiles of the optical spectra were analysed and origins
of the structures discussed.

1. Introduction

Potassium niobate (KNbO3) is one of the most extensively studied compounds of the perovskite
class of ferroelectric materials. The perovskite structure is adopted by numerous compounds
with ABX3 stoichiometry, where A and B are cations and X represents anions such as those
of oxygen, nitrogen and fluorine [1–4]. The perfect perovskite has full cubic symmetry. The
A and B cations are arranged on a simple cubic lattice and the X ions lie on the face centres
nearest the (usually transition metal) B cations. The perovskites have been studied extensively
because of their rich display of a variety of structural phase transitions [3].
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Potassium niobate, for instance, crystallizes in the simple cubic paraelectric perovskite
phase at high temperatures (>710 K). When cooled, it undergoes three ferroelectric phase
transitions (at lower temperatures) resulting in a series of distorted perovskite structures,
namely, the tetragonal phase, the orthorhombic phase and the ground state rhombohedral
phase [4, 5]. Potassium niobate is a perovskite ferroelectric material which is important
in a variety of applications in optical technology involving holographic storage, optical
data processing, phase conjugation [6], nonvolatile ferroelectric memories, dielectrics for
microelectronics and wireless communication [7]. In addition, KNbO3 is a very interesting
nonlinear optical (NLO) material because of its high NLO coefficients [8, 9].

In order to fully take advantage of the properties of KNbO3 in the fabrication of
optical devices, a theoretical investigation of the electronic structure as well as the optical
properties is necessary. Most of the previous theoretical studies have concentrated on the
ferroelectricity and/or structural instability [5, 10–13] as well as electronic structure [14–
17]. However, only a few first-principles calculations exist in the case of KNbO3 [18, 19].
First-principles calculations offer one of the most powerful tools for carrying out theoretical
studies of structural, electronic and optical properties of ferroelectrics [20–26] and other
materials [27, 28]. In view of this, we shall employ one such first-principles method in this
study in order to elucidate the electronic and optical properties of the material.

The optical properties of the ground state orthorhombic phase of KNbO3 have been
studied experimentally [29–31]. Theoretical studies [32–37] have been performed on
both the orthorhombic and cubic phases of potassium niobate. In this work, we report
the results of a systematic theoretical study based on first-principles calculations of the
structural, electronic and optical properties of the paraelectric cubic KNbO3 using full-potential
linearized augmented plane wave (FP-LAPW) method [38] with the Perdew–Burke–Ernzerhof
(PBE) [39] generalized gradient approximation (GGA) for the exchange and correlation
term. In addition, we shall assume that KNbO3 has the ideal cubic perovskite structure,
neglecting the slight non-cubic distortions in the crystal structure of KNbO3 below 700 K [40].
The calculations are performed at the experimental lattice constant (extrapolated to zero
temperature) a = 3.996 Å [41].

The paper is organized as follows. In section 2, we give a brief description of the method
of calculation of the ground state and optical properties. The results of the present calculations
as well as the discussions are given in section 3 while conclusions are presented in section 4.

2. Method of calculation

The self-consistent calculations for the paraelectric cubic phase of KNbO3 were performed
using the nonscalar-relativistic FP-LAPW method [38], within the framework of the density
functional theory, at the experimental lattice constant, to allow for ease of comparison. The
paraelectric cubic phase of KNbO3 has the ideal cubic Pm3m perovskite structure. The
cubic unit cell contains one molecule with the K sitting at the origin (0, 0, 0)a, the Nb
at the body centre (0.5, 0.5, 0.5)a and the three oxygen atoms at the three face centres
(0.5, 0.5, 0.0)a, (0.0, 0.5, 0.5)a and (0.5, 0.0, 0.5)a, where a is the lattice constant. In the
FP-LAPW method [38, 42], the unit cell is divided into two parts: non-overlapping atomic
spheres (centred at atomic sites) and an interstitial region. Within these spheres, the potential
is expanded in the form

V (r) =
∑
lm

Vlm(r)Ylm(r̂) (1)

and, outside the sphere,

V (r) =
∑

K

VK eiKr (2)
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where the Ylm(r̂) are spherical harmonics. The charge density is also expanded analo-
gously. In the following calculations, we have distinguished the K (1s22s22p63s23p6),
Nb (1s22s22p63s23p63d104s24p6) and O (1s2) inner-shell electrons from the valence electrons
of K (4s1), Nb (4d35s2) and O (2s22p4) shells. The sphere radii used in the calculations for
K, Nb and O are 1.6, 2.0 and 1.5 au respectively. In this method of calculation, there are no
shape approximations to the charge density or potential; hence the procedure is referred to as
the ‘full-potential’ method. The calculations are based on the GGA to the density functional
theory [43, 44] with the exchange–correlation potential parametrized according to the scheme
of the PBE GGA [39]. Well converged solutions were obtained for RMT Kmax = 8; RMT is
the smallest of all atomic sphere radii and Kmax is the plane wave cut-off. This gives a well
converged basis set consisting of 563 plane waves per k-point in the cubic phase. The number
of mesh points in the Brillouin zone is 729 and the division of the reciprocal lattice vectors
(intervals) is into 9 × 9 × 9 meshes generating 35 k-points in the irreducible wedge.

The pressure dependence of the energy gap for KNbO3 was calculated using the
equation [45, 46](

∂ Eg

∂ P

)
T

=
(

∂ Eg

∂V

)
T

(
∂V

∂ P

)
T

= − V0

B0

(
∂ Eg

∂V

)
T

. (3)

The value of (∂ Eg/∂V )T was obtained directly from the energy gap versus volume calculations,
and the value of (∂V/∂ P)T was obtained from the compressibility relationship:

k = 1

B0
= − 1

V0

(
∂V

∂ P

)
T

(4)

where V0 is the equilibrium volume and B0 is the bulk modulus at the equilibrium volume.
The linear response of the system to an external electromagnetic field with a small

wavevector is measured through the complex dielectric function ε(ω). Therefore, in order
to calculate the optical properties, a dense mesh of uniformly distributed k-points is required.
The Brillouin zone integration was performed using the tetrahedron method with 560 k-points
in the irreducible part of the Brillouin zone without broadening. The dielectric function is
known to describe the optical response of the medium at all photon energies E = h̄ω. The
interband contribution to the imaginary part of the dielectric function ε(ω) is calculated by
summing transitions from occupied to unoccupied states (with fixed k) over the Brillouin zone,
weighted with the appropriate matrix elements giving the probability for the transition. In this
study, the imaginary part of the dielectric function ε2(ω) is given as in [47] by

ε2(ω) =
(

4π2e2

m2ω2

)∑
i, j

∫
〈i |M| j〉2 fi (1 − f j )δ(E f − Ei − ω) d3k, (5)

where M is the dipole matrix, i and j are the initial and final states respectively, fi is the Fermi
distribution function for the i th state and Ei is the energy of electron in the i th state. The
real part (ε1(ω)) of the dielectric function can be extracted from the imaginary part using the
Kramers–Kronig relation in the form [48, 49]

ε1(ω) = 1 +
2

π
P

∫ ∞

0

ω′ε2(ω
′) dω′

(ω′2 − ω2)
, (6)

where P stands for the principal value of the integral.
The knowledge of both the real and imaginary parts of the dielectric tensor allows

the calculation of important optical functions. In this paper, we also present and analyse
some optical functions such as the reflectivity, the absorption coefficient, the real part of the
optical conductivity, the electron energy-loss spectrum, the refractive index, as well as the
extinction coefficient. The reflectivity spectrum is derived from Fresnel’s formula for normal
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incidence assuming an orientation of the crystal surface parallel to the optical axis using the
relation [49, 50]

R(ω) =
∣∣∣∣ε

1/2(ω) − 1

ε1/2(ω) + 1

∣∣∣∣
2

. (7)

We calculate the absorption coefficient, I (ω), the real part of the optical conductivity,
Re[σ(ω)], and the electron energy-loss function, − Im(1/ε), using the following expres-
sions [50]:

I (ω) = √
2(ω)

(√
ε1(ω)2 + ε2(ω)2 − ε1(ω)

)1/2
, (8)

Re[σ(ω)] = ωε2

4π
, (9)

− Im

(
1

ε

)
= ε2(ω)

ε2
1(ω) + ε2

2(ω)
. (10)

Also, the optical functions such as the refractive index, n(ω), and the extinction coefficient,
k(ω), are calculated in terms of the components of the complex dielectric function as fol-
lows [50]:

n(ω) =
[

ε1(ω)

2
+

√
ε1(ω)2 + ε2(ω)2

2

]1/2

, (11)

k(ω) =
[√

ε1(ω)2 + ε2(ω)2

2
− ε1(ω)

2

]1/2

. (12)

We have calculated the theoretical optical spectra using equations (5)–(12). However, it is well
known that the density functional calculations within the local density approximation (LDA) or
GGA tend to underestimate the energies of excitation [51]. As a result, the peaks in the optical
functions may occur at lower energies. Usually, one approach adopted in solving the problem
of density functional theory (DFT) for excitations from the ground state is the quasiparticle
GW formalism [52, 53] which is the formal basis for the scissors-operator approximation. It
has been shown [54–57] that LDA/GGA combined with the scissors-operator approximation
describes the optical spectrum rather well. If the k-dependence of the error in the excitation
energies is negligible, �(k) � �, εGW

2 (h̄ω) can be obtained by shifting εDFT
2 (h̄ω) along the

energy axis [56]:

εGW
2 (h̄ω) = εDFT

2 (h̄ω − �). (13)

We therefore estimate the correction to the band gap on the basis of the difference between the
calculated GGA band gap and the experimental optical gap [57].

3. Results and discussion

3.1. Structural parameters

The total energy of cubic KNbO3 was calculated at many different volumes around the
experimental volume and fitted to the Murnaghan equation of state [58]. This gave an
equilibrium lattice constant (a0) of 4.039 Å which is 1.05% larger than the experimental
value. This is within the accuracy range of calculations based on density functional GGA.
The bulk modulus (B0) at the experimental equilibrium volume is 170.94 GPa while the first
pressure derivative of the bulk modulus (B ′) is 4.79. These results compare very well with
previous theoretical calculations [59]. The bulk modulus is smaller than the experimental value
by about 22%. This apparently large discrepancy may be due to the fact that the theoretical
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Figure 1. Electronic band structures of cubic KNbO3.

bulk modulus has been calculated in the cubic phase at 0 K while KNbO3 crystal is known
to be cubic only in the high temperature range. Furthermore, the experimental bulk modulus
may be incorrect due to the uncertainty in the experimentally derived elastic constants from
which it was deduced [60].

3.2. Electronic band structure and density of states

The electronic band structure of paraelectric cubic KNbO3 along the symmetry lines of the
simple cubic Brillouin zone is shown in figure 1. It is clear that the indirect band gap appears
between the topmost valence band at the R point and the bottom of the conduction band at
the � point. The overall profile of our band structure is qualitatively like the band structure
obtained by previous studies [59, 61]. It is observed that the conduction band minimum in
going from the � point through � to the X point always remains nearly flat in agreement with
previous studies [33, 62]. The calculated indirect band gap (R–�) is 1.58 eV while the smallest
direct band gap (�v–�c) is 2.23 eV. These calculated values are smaller than the experimental
value of 3.3 eV for the indirect gap [60]. The origin of this discrepancy could be the use of
DFT which generally underestimates the band gap in semiconductors and insulators [63].

The bands with the lowest energy in figure 1,lying between −17 and −16.5 eV, correspond,
to a very large extent, to O 2s states, while the nearly flat band around −11.0 eV is due to K 3s
states. The nine valence bands between −5.5 eV and the Fermi level (zero) are mainly due
to oxygen O 2p states hybridized with Nb 4d states. These nine valence bands are split into
three triply degenerate levels at the � point (�15, �25 and �15) separated by energies 1.15 eV
(�15–�25), 0.42 eV (�25–�15) and 2.23 eV (�15–�25′ ) due to the crystal field and electrostatic
interaction between mainly O 2p and Nb 4d orbitals. In the conduction band, the triply (�′

25)
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Figure 2. Total and site decomposed DOS for KNbO3.

and doubly (�12) degenerate levels represent Nb 4d t2g and Nb 4d eg orbitals separated by
energy ∼3.84 eV. The topmost valence bands are the oxygen 2px , 2py states while the lowest
valence bands are formed by hybridization of Nb 4d eg and O 2pz states. In the conduction
band region, the first conduction band from about 1.6 eV above the Fermi level to ∼5.5 eV
arises from predominantly Nb 4d t2g states with a small O 2p mixing. The top bands in the
conduction band of figure 1 belong to Nb 4d eg states.

To further elucidate the nature of the electronic band structure, we have also calculated
the total and atomic site projected densities of states (DOS) of ideal cubic KNbO3. These
are displayed in figure 2. The results are consistent with those obtained in previous
studies [3, 36, 37]. Comparing the total DOS with the angular momentum projected DOS
of KNbO3 for Nb 4d and O 2p states displayed in figure 3, it is seen that from −5.5 to 0 eV,
even though the DOS for O 2p is higher than that of Nb 3d, they are fairly similar. This
shows that some electrons from Nb 4d transform into the valence band and take part in the
interaction between Nb and O. This implies that there is hybridization between Nb 4d and O
2p. Conversely, in the conduction band, the DOS of Nb d is much higher than that of O p.
This implies that there are few O p electrons which transform into the conduction band and
hybridize with Nb d electrons. The DOS of Nb d and O p thus show that the interaction between
Nb and O is covalent. On the other hand, the DOS of K 3p shows a peak around −11.0 eV
attributed to the flat band around this energy in the band structure. The structures lowest in
energy between about −17.5 and −16.0 eV are shown to be of predominantly O 2s character
with some mixing of Nb p states. On the whole, our results are in agreement with the LMTO-
ASA calculations of Neumann [18] and extended linear augmented plane wave calculations of
Krasovskii et al [36].

Figure 4 shows the charge density contour in the (110) plane for cubic paraelectric KNbO3.
Charge density maps serve as a complementary tool for achieving a proper understanding of
the electronic structure of the system being studied. In figure 4, atoms K, Nb and O are at
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Figure 3. Site and angular momentum decomposed DOS for KNbO3.

points (50, 0), (50, 50) and (25, 50) respectively as well as at (75, 50). In the figure, we see
that there is interaction of charges between Nb and O due to Nb 4d and O 2p hybridization,
thus showing that there is covalent bonding between niobium and oxygen. The near spherical
charge distribution around the potassium site is negligible and as a result the potassium atom
is fairly isolated which could indicate that the bonding between potassium and NbO3 is mainly
ionic. We therefore find that in cubic KNbO3, there is bonding anisotropy. Our results are
consistent with those of [18] for KNbO3 and KTaO3, of Wang [26] for NaTaO3 and of Cohen
and co-workers [64] for BiTiO3.
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In figure 5, the volume dependence of the energy gap of KNbO3 is displayed. The
calculations were performed using the FP-LAPW method within the GGA by applying
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equation (3). It is seen that the energy gap increases with volume and is almost linearly
dependent on volume with a slope of (∂ Eg/∂V ) = −0.004 74 for lattice constants below
the equilibrium volume (V0 = 444.69 Bohr3). For lattice constants higher than a0, the
volume dependence deviates from being linear. The pressure coefficient given in equation (3)
is determined from the linear region of the energy gap versus volume plot [45, 46]. Our
calculations yield a pressure coefficient, (∂ E (R→�)

g /∂ P), of 12.3 meV GPa−1. This band gap
pressure behaviour is in agreement with previous studies [59]. The increase in band gap with
decrease in volume appears to arise from the faster increase in the energy of the conduction
band minimum than the valence band maximum under pressure. We also account for the
volume deformation potential (a(R→�)

V ) using the expression [65, 66]:

a(R→�)

V = dE (R→�)
g

d ln V
= −B

dE (R→�)
g

d p
, (14)

where B is the bulk modulus. This yields a(R→�)
V = −2.10 eV.

The calculated dependence of the band gap on the relative variation in the lattice constant
is displayed in figure 6. The variation shows a linear behaviour when represented through the
equation

E R−�
0 (a) = A + B

(−�a

a0

)
(15)

where �a = a − a0 is change in lattice constant and a0 is the equilibrium lattice constant
at zero pressure. From the linear fit, the values of A and B were found to be 1.514 and
6.039 eV respectively. This predicted linear relation is in agreement with the result of Zhu
et al [67] but in contrast to the sublinear or supralinear behaviour seen in most semiconducting
compounds [68, 69].

3.3. Optical properties

In this section, we examine the optical response functions. The imaginary (ε2) and the real
(ε1) parts of the dielectric function were calculated using equations (5) and (6) as well as the
DFT scissors-operator approximation (equation (13)). The calculated spectra are displayed
in figures 7 and 8. The shifted spectrum (solid curve) is compared to that from a previous
theoretical study (dashed curve) taken from [33]. It is observed that the theoretical peak at
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6.22 eV is lower in amplitude than the experimental one. This could be interpreted as being
probably due to the neglect of excitonic and local field effects [70] or lifetime broadening [71].

In order to account for the structures observed in the optical spectra, it is customary to
consider transitions from occupied to unoccupied bands in the electronic energy band structure
especially at high symmetry points in the Brillouin zone. For the absorptive part of the dielectric
function ε2, shown in figure 7, the highest peak in ε2 at ∼6.22 eV arises from O 2p → Nb 4d t2g

at the R point. This is followed by other smaller peaks at about 9.3 and 11.4 eV with that at
9.3 eV exhibiting slightly higher amplitude. The positions of these peaks are in fair agreement
with the results of [33] for the orthorhombic phase also displayed in the figure with a dashed
curve. The minimum in ε2 occurs at 7.14 eV.

In the dispersive part, ε1, of the dielectric function shown in figure 8, the calculated spectra
have been obtained by Kramers–Kronig transformation of the shifted ε2 spectra. The first peak
in ε1 at about 3.6 eV originates from O 2p → Nb 4d t2g at probably the � point or the X points.
This peak is followed by a decrease which reaches a global minimum (between 0 and 20 eV) at
6.3 eV, and fairly small peaks at 7.4 and 8.7 eV. Our results are compared with the calculations
of Castet-Mejean and Michel-Calendini [33] displayed with crosses.

The reflectivity spectra are shown in figure 9. The calculated reflectivity is shown with
a solid curve, while the crosses show the measured results [31]. The spectra exhibit peaks



Properties of KNbO3 5955

 0  5  10  15  20  0  5  10  15  20
Energy[eV] Energy[eV]

 

 

 

 

 

 

 

 0

 5

 10

 15

 20

 25

 30

 35

0

1

2

3

4

5

6
A

rb
itr

ar
y 

un
its

A
rb

itr
ar

y 
un

its

(a) Absorption coefficient (b) Optical conductivity

Figure 10. The calculated (a) absorption coefficient and (b) real part of the optical conductivity of
KNbO3 in the cubic phase.

 0  5  10  15  20  0  5  10  15  20

 0  5  10  15  20

(a) Energy-loss function (b) Refractive index

(c) Extinction coefficient

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1

 1.5

 2

 2.5

Energy[eV] Energy[eV]

Energy[eV]

A
rb

itr
ar

y 
un

its

A
rb

itr
ar

y 
un

its

A
rb

itr
ar

y 
un

its

0

 0.5

Figure 11. The theoretical (a) electron energy-loss spectrum, (b) refractive index and (c) extinction
coefficient of cubic KNbO3.

similar to those in the dielectric function. We find also that the reflectivity varies widely as
a function of energy. This could possibly make the compound KNbO3 suitable for a variety
of optical applications. It is important to note that the discrepancy between the theoretically
calculated reflectivity spectra and the experimental result [31] is perhaps due to the fact that
the measured reflectivity is for orthorhombic KNbO3. The deviations may therefore reflect the
strong changes in the Nb 4d derived conduction band produced by the displacement of atoms
from their perovskite structure positions.

The calculated linear absorption spectrum and the real part of the optical conductivity
are displayed in figure 10. The fundamental absorption edge starts from about 3.3 eV which
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corresponds to the direct �–� transition. This originates from the transition from the O 2p
electron states located at the top of the valence band to the empty Nb 4d electron states
dominating the bottom of the conduction bands. The first peak in the absorption spectrum
occurs at 6.3 eV. Other peaks occur at 9.3, 11.5 and 14.5 eV. Similar structures are seen in
the recent calculations of Duan et al [37] on the orthorhombic phase of KNbO3. Also in
figure 10(b), the energy dependence of the real part of the optical conductivity is displayed.
The origin of the structures in the imaginary part of the dielectric function also explains the
structures in the optical conductivity. In addition, the amplitude of the structures in the optical
conductivity goes as ωε2.

The electron energy-loss function − Im(ε)−1 of KNbO3 was calculated from the Im(ε).
This is displayed in figure 11(a). This function is usually large at the plasmon energy
whose position corresponds to ε1(ω) = 0, provided that ε2(ω) is reasonably smooth in these
regions [72], thus giving the plasmon energy as ∼7.0 eV. The other peaks arise at the energies
of the interband transitions from the valence bands to the lower and upper conduction bands.
Also in the figure (figures 11(b) and (c)) are displayed the refractive index and extinction
coefficient. In the far infrared region, the refractive index is about 2.3 and it increases with
energy in the transparency region reaching a peak in the ultraviolet at about 3.6 eV due to
probably interband transitions. It then decreases to a minimum level at 6.9 eV. On the other
hand, the peak in the extinction coefficient occurs at 6.2 eV.

Generally, we have performed the calculations over a wide energy range leading to very
high energy transitions such that contributions originating from each of the atoms will be
accommodated. It is to be noted that there are no experimental results for the optical properties
for the paraelectric cubic phase of KNbO3. We expect that our theoretical studies will motivate
experimental work aimed at investigating the optical properties of the cubic phase of this
compound.

4. Conclusions

A full-potential investigation of the electronic structure, chemical bonding and optical
properties of KNbO3 in the paraelectric cubic phase has been performed using the linearized
augmented plane wave method. The results yield band structures that are in agreement with
previous theoretical studies. The calculations show that the band gap is indirect (R → �).
Our calculated fundamental gap is 1.58 eV and increases with increase in pressure. The
total DOS obtained from our full-potential calculations are discussed. It is found that there
is significant hybridization between Nb d and O p states in the compound. Analysis of the
nature of the chemical bonding indicates that the interaction between Nb and O is covalent
and that the one between K and NbO3 is ionic. The optical properties such as the dielectric
function, reflectivity, absorption coefficient, real part of the optical conductivity, electron
energy-loss function, refractive index and extinction coefficient have been studied. Using the
band structure, we have analysed the interband contribution to the optical response functions.
It is found that the origin of the peaks in the dielectric function probably also explains the
structures in the spectra of these optical functions.
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